No Image

Энергозависимой памятью пк является

0 просмотров
10 марта 2020

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:

Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.

Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

Энергозависимой называется память, которая стирается при выключении компьютера.

Энергонезависимой называется память, которая не стирается при выключении компьютера.

К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.

К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш — память . В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять . Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

Внешняя память может быть с произвольным доступом и последовательным доступом . Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

Выделяют следующие основные типы устройств памяти с произвольным доступом:

1. Накопители на жёстких магнитных дисках (винчестеры , НЖМД) — несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Первые жесткие диски состояли из 2 дисков по 30 Мбайт и обозначались 30/30, что совпадало с маркировкой модели охотничьего ружья “Винчестер” — отсюда пошло такое название этих накопителей.

2. Накопители на гибких магнитных дисках ( флоппи-дисководы , НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий — у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты — 1,2Мбайт; 3,5 дюймовой дискеты — 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются.

Читайте также:  Как проверить остаток гигабайтов на мтс

3. Оптические диски ( СD-ROM — Compact Disk Read Only Memory) — компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Данная технология получила название CD-RW и DVD-RW соответственно.

Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют:

1. Накопители на магнитных лентах (НМЛ) – устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами – стримеры – имеют увеличенную скорость записи 4 — 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации.

2. Перфокарты – карточки из плотной бумаги и перфоленты – катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются.

Различные виды памяти имеют свои достоинства и недостатки. Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера.

Кратко рассмотрим принцип работы оперативной памяти . Минимальный элемент памяти — бит или разряд способен хранить минимально возможный объем информации — одну двоичную цифру. Бит очень маленькая информационная единица, поэтому биты в памяти объединяются в байты — восьмерки битов, являющиеся ячейками памяти. Все ячейки памяти пронумерованы. Номер ячейки называют ее адресом. Зная адрес ячейки можно совершать две основные операции:

1) прочитать информацию из ячейки с определенным адресом;

2) записать информацию в байт с определенным адресом.

Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины .

Читайте также:  Wd my book duo 6tb

По шине адреса передается адрес ячейки памяти, по шине данных – передаваемая информация. Как правило, эти процессы проходят одновременно.

Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт. Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал – сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса.

Классификация оперативной памяти

Типы реальной памяти и их основные характеристики

Одним из важнейших устройств компьютера является память, или запоминающее устройство (ЗУ). По определению, данном в книге "Информатика в понятиях и терминах", ЗУ — "функциональная часть цифровой вычислительной машины, предназначенной для записи, хранения и выдачи информации, представленных в цифровом виде." Однако под это определение попадает как собственно память, так и внешние запоминающие устройства (типа накопителей на жестких и гибких дисках, магнитной ленты, CD-ROM), которые лучше отнести к устройствам ввода/вывода информации. Таким образом под компьютерной памятью в дальнейшем будет пониматься только "внутренняя память компьютера: ОЗУ, ПЗУ, кэш память и флэш-память". Итак, рассмотрим классификацию внутренней памяти компьютера.

Оперативное запоминающее устройство является, пожалуй, одним из самых первых устройств вычислительной машины. Она присутствовала уже в первом поколении ЭВМ по архитектуре, созданных в в начале сороковых —пятидесятых годов двадцатого века. За эти пятьдесят лет сменилось не одно поколение элементной базы, на которых была построена память. Поэтому приведем классификацию ОЗУ по элементной базе и конструктивным особенностям. С некоторой натяжкой к ОЗУ можно отнести и ПЗУ, если рассматривать его как быстрое ЗУ только для чтения.

Схема данной классификации приведена на рисунке.

Рис. Классификация ОЗУ.

Как видно из схемы в зависимости от сохранности данных при отключении питания ОЗУ делится на энергозависимое и энергонезависимое.

К энергонезависимым ЗУ, в первую очередь, относится класс всевозможных ферритовых ЗУ. Далее, условно энергонезависимыми можно назвать ППЗУ стираемые УФ и электрически стираемые (перепрограммируемые – флэш-память). Условность заключается в достаточно долгом (десятки тысяч часов) но не бесконечном сроке хранения записанной информации в данных ЗУ. Следующий класс энергонезависимых ЗУ составляют однократно программируемые ПЗУ. Данные ПЗУ могут поставляться чистыми (вся память записана нулями или единицами) с последующим электрическим однократным программированием, либо программироваться в процессе изготовления (заказные ПЗУ).

Энергозависимая память – это всевозможные виды ОЗУ для быстрого чтения/записи. При отключении питания такая память полностью теряет информацию, но обладает высоким быстродействием. Данный класс реальных ЗУ делится на динамические (с необходимостью регенерации информации) и статические (не требующие регенерации информации). Теперь рассмотрим более подробно каждый класс ЗУ.

ЭВМ первого поколения по элементной базе были крайне ненадежными. Так, среднее время работы до отказа для ЭВМ “ENIAC” составляла 30 минут. Скорость счета при этом была не сравнима со скоростью счета современных компьютеров. Поэтому требования к сохранению данных в памяти компьютера при отказе ЭВМ были строже, чем требования к быстродействию оперативной памяти. Вследствие этого в этих ЭВМ использовалась энергонезависимая память.

Читайте также:  Как провести анализ текста

Энергонезависимая память позволяла хранить введенные в нее данные продолжительное время (до одного месяца) при отключении питания. Чаще всего в качестве энергонезависимой памяти использовались ферритовые сердечники. Они представляют собой тор, изготовленных из специальных материалов — ферритов. Ферриты характеризуются тем, что петля гистерезиса зависимости их намагниченности от внешнего магнитного поля носит практически прямоугольный характер.

Рис. B.1. Диаграмма намагниченности ферритов.

Вследствие этого намагниченность этого сердечника меняется скачками (положение двоичного 0 или 1, смотри рисунок B.1.) Поэтому, собрав схему, показанную на рисунке B.2, практически собран простейший элемент памяти емкостью в 1 бит. Память на ферритовых сердечниках работала медленно и неэффективно: ведь на перемагничивание сердечника требовалось время и затрачивалось много электрической энергии. Поэтому с улучшением надежности элементной базы ЭВМ энергонезависимая память стала вытесняться энергозависимой — более быстрой, экономной и дешевой. Тем не менее, ученые разных стран по-прежнему ведут работы по поиску быстрой энергозависимой памяти, которая могла бы работать в ЭВМ для критически важных приложений, прежде всего военных.

Рис. B.2. Схема элемента памяти на ферритовых сердечниках.

Не нашли то, что искали? Воспользуйтесь поиском:

Энергонезависимая память (англ. Non Volatile Random Access Memory; NVRAM ) — разновидность запоминающих устройств с произвольным доступом, которые способны хранить данные при отсутствии электрического питания. Может состоять из модуля SRAM, соединённого со своей собственной батарейкой. В другом случае SRAM может действовать в связке с EEPROM, например, флеш-памятью [1] .

В более общем смысле, энергонезависимая память — любое устройство компьютерной памяти, или его часть, сохраняющее данные вне зависимости от подачи питающего напряжения. Однако подпадающие под это определение носители информации, ПЗУ, ППЗУ, устройства с подвижным носителем информации (диски, ленты) и другие носят свои, более точные названия. Поэтому термин «энергонезависимая память» чаще всего употребляется более узко, по отношению к полупроводниковой БИС запоминающего устройства, которая обычно выполняется энергозависимой, и содержимое которой при выключении обычно пропадает.

Условно энергонезависимой памятью можно считать энергозависимую память, имеющую внешнее питание, например от батареи или аккумулятора. Например, часы на системной плате персонального компьютера и небольшая память для хранения настроек BIOS питаются от компактной батарейки, закреплённой на плате. Современные RA >[2] [3] .

В начале 2010-х годов наиболее широко распространенной энергонезависимой памятью большого объёма являлась флеш-память NAND (Charge Trap Flash).

Исследуется множество альтернативных технологий энергонезависимой памяти, некоторые из которых могли бы заменить флеш-памяти после её приближения к физическим пределам масштабирования, например: FeRAM, MRAM, PMC, PCM, ReRAM и ряд других [4] [5] [6]

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock detector